
ETMAG LECTURE 2

Complex numbers continued



We can rewrite the definition of addition and multiplication of 
complex numbers in the language of points from the complex
plane:

(a,b)+(c,d) = (a+c,b+d) which corresponds to geometrical 
addition of vectors anchored at (0,0) with endpoints at (a,b) 
and (c,d), respectively, and

(a,b)⋅(c,d) = (ac-bd,ad+bc) (geometrical meaning of this 
operation is more complicated).

Hence, we can look at the algebra of complex numbers as an 
extension of arithmetic from the set of real numbers to the set 
of pairs of real numbers.



Notice that both complex addition and multiplication, when 
performed on complex numbers with imaginary parts are just 
"normal" arithmetic operations:
(a,0)(c,0) = (ac-0⋅0,a⋅0+0⋅c) = (ac,0). Or, in the standard form,
(a+0i)(c+0i) = ac-0⋅0+(a0+0c)i = ac. The same for addition.

The complex modulus, when applied to a real number gives 

the "normal" absolute value: |a+0i| = 𝑎2 + 02 = 𝑎2 = |a|.

Comprehension test

1. The same happens for complex division.

2. z = z if and only if z is a real number

3. z = z

4. z + w = z + w

5. 𝑧 ⋅ 𝑤 = 𝑧 ⋅ 𝑤



A point z of the plane can be identified by its Cartesian 
coordinates, say (a,b), but also by its polar coordinates, i.e. the 
distance r from the origin and the angle 𝜑 between positive 
half-axis OX and the segment (0,0)(a,b). Hence, (a,b) =
(rcos 𝜑,rsin 𝜑) or, equivalently, z = a+bi = r(cos 𝜑+ isin 𝜑). 

Clearly, r = 𝑎2 + 𝑏2, i.e. r = |z|

Definition.
The formula r(cos 𝜑+ isin 𝜑) is known as the polar form
(sometimes trigonometric form) of the complex number z. 

(Wikipedia & TT)



Remarks.

• (-1)(cos𝜑+ isin𝜑) is NOT a polar form of a complex 
number

• 7(cos 𝛼 + isin 𝜑) is NOT a polar form (unless 𝛼 =  𝜑)

• 666(cos𝜑 − isin𝜑) is NOT a polar form (unless sin 𝜑 = 0)

• The question "where the hell is this imaginary unit i" 
suddenly becomes meaningful. The answer is "at (0,1)".

Comprehension

1. Find the polar form of 1, -1, i and −𝑖.

2. Find the polar form of 666(cos 𝛼 − isin 𝛼 )

3. Knowing that the polar form of z is r(cos 𝛼 + isin 𝛼) find 
the polar form of 𝑧.



The angle 𝜑 is called an argument of z. Since both sine and 
cosine are periodic function with the period of 2𝜋, a complex 
number has infinitely many arguments, each of the form
𝜑+2k𝜋 for some integer k. Hence the term "THE polar form of 
z" is a slight abuse of language.

Definition.
The argument of z belonging to the interval <0;2 𝜋) is called 
the principal argument of z.

Example.

The polar form of z=1+i is 2(𝑐𝑜𝑠
𝜋

4
+ 𝑖 𝑠𝑖𝑛

𝜋

4
), the polar form 

of z=1 is 𝑐𝑜𝑠0 + 𝑖𝑠𝑖𝑛0 , for z=−1 is cos 𝜋 + 𝑖 sin 𝜋

It helps if you memorize values of sine and cosine for those 

basic angles 0, 
𝜋

4
,
𝜋

3
,
𝜋

6
,
𝜋

2
and the like.



Theorem (Multiplication Lemma)

Let z = r(cos 𝛼 + i sin 𝛼) and w = t(cos 𝜑 + i sin 𝜑) be two 
complex numbers. Then

zw = rt(cos(𝛼+𝜑) + i sin(𝛼+𝜑)).

Proof.
zw = r(cos α+i sin α)t(cos 𝜑 +i sin 𝜑) = rt((cos α cos 𝜑 – sin α
sin 𝜑)+i(cos α sin 𝜑 +sin α cos 𝜑)) = rt(cos(α+𝜑)+i sin(α+𝜑)). 
The last transformation follows from well-known 
trigonometric identities. QED

Remark.
Another way of representing a complex  number z = r(cos 𝛼 + 
i sin 𝛼) is the exponential form z=r𝑒𝑖𝛼. By laws of 
exponentiation we obtain a similar law: zw = rt e𝑖(𝛼+𝜑). 



Remark. This is as close as we can get to a geometrical 
interpretation of complex multiplication: when you multiply z
by w you rotate the vector representing z counterclockwise by 
the argument of w and you adjust the length so that it becomes  
the product of lengths of z and w.

Picture from Wikipedia



Corollary ( of Multiplication Lemma)

Let z = r(cos 𝛼 + i sin 𝛼) and w = t(cos 𝜑 + i sin 𝜑) be two 
complex numbers. Then

𝑧

𝑤
= 
𝑟

𝑡
(cos(𝛼 − 𝜑) + i sin(𝛼 − 𝜑)).

Proof.
𝑧

𝑤
is the only number x satisfying xw = z. 

Try x = 
𝑟

𝑡
(cos(𝛼 − 𝜑) + isin(𝛼 − 𝜑)). 

Using the Multiplication Lemma we obtain 

xw = 
𝑟

𝑡
(cos(𝛼 − 𝜑) + i sin(𝛼 − 𝜑)) ⋅ t(cos 𝜑 + i sin 𝜑) =

r(cos ((𝛼 − 𝜑)+𝜑) + i sin ((𝛼 − 𝜑)+𝜑)) =  r(cos 𝛼 + i sin 𝛼) =

z hence, x = 
𝑟

𝑡
(cos(𝛼 − 𝜑) + i sin(𝛼 − 𝜑))=

𝑧

𝑤
. QED



Corollary (de Moivre Law)

Let z = r(cos 𝛼 + i sin 𝛼). Then for every positive integer n

zn = rn(cos 𝑛𝛼 + i sin 𝑛𝛼).

Proof.
The formula follows from a repeated application of the 
Multiplication Lemma. (Use induction if you want to be 
VERY rigorous). QED

Remark. This means that when you raise z of modulus 1 to n-
th power, geometrically you rotate z counterclockwise n-1 
times by 𝛼 (the modulus stays 1).



Example.

Calculate z10 where 𝑧 = 1 + 𝑖 3. We will use de Moivre Law. 
First, we find the modulus of z and factor it out. Since |𝑧| = 2 

we can write 𝑧 = 2(
1

2
+ 𝑖

3

2
). The number in parenthesis 

belongs to the unit circle, hence, there exists 𝛼 such that 

cos𝛼 =
1

2
and 𝑠𝑖𝑛𝛼 =

3

2
. If you recall your high school 

algebra the angle is 
𝜋

3
, i.e. z=2(cos

𝜋

3
+ 𝑖sin

𝜋

3
) and 𝑧10 =

210(cos
10𝜋

3
+ 𝑖sin

10𝜋

3
) = 1024 (cos(2𝜋 +

4𝜋

3
) + 𝑖sin(2𝜋 +

4𝜋

3
)) = 1024 (cos(

4𝜋

3
) + 𝑖sin(

4𝜋

3
)) = 1024(−

1

2
+ 𝑖(−

3

2
)).

This is much more fun than going (1 + 𝑖 3) (1 + 𝑖 3) … ten 
times.



Definition 1.2. 
Every complex number w satisfying the equation 𝑤𝑛=z is 
called a root of z of order n.

Notice that, unlike in real numbers, both −2 and 2 are called  
square roots of 4. De Moivre Law can be used to calculate 
complex roots. 

Root formula 
Take z=r(cos 𝛼+isin 𝛼) and suppose w=p(cos𝜑 +isin 𝜑) is a 
root of z of order n. Then 𝑤𝑛 = 𝑝𝑛(cos n𝜑 + i sin n𝜑) = r(cos
𝛼 +isin 𝛼). Hence, p= 𝑛 𝑟 (in the usual, real-number sense) and 
cos n𝜑 =cos 𝛼 and sin n𝜑 =sin 𝛼. 

Since 2𝜋 is the period of both sine and cosine, we obtain

n𝜑k= 𝛼 +k2𝜋 or, equivalently, 𝜑k = 
𝛼+2𝑘𝜋

𝑛
, for k=0,1,2, ... .

So, wk = 𝑛 𝑟(𝑐𝑜𝑠
𝛼+2𝑘𝜋

𝑛
+ 𝑖sin

𝛼+2𝑘𝜋

𝑛
). 



Consider two roots whose indices differ by n, say wk and wk+n. 

wk+n =𝑛 𝑟(𝑐𝑜𝑠
𝛼+2(𝑘+𝑛)𝜋

𝑛
+ 𝑖sin

𝛼+2(𝑘+𝑛)𝜋

𝑛
)=

𝑛 𝑟(𝑐𝑜𝑠
𝛼+2𝑘𝜋+2𝑛𝜋

𝑛
+ 𝑖sin

𝛼+2𝑘𝜋+2𝑛𝜋

𝑛
)=

𝑛 𝑟(cos(
𝛼+2𝑘𝜋

𝑛
+ 2𝜋) + 𝑖sin(

𝛼+2𝑘𝜋

𝑛
+ 2𝜋))=

𝑛 𝑟(cos(
𝛼+2𝑘𝜋

𝑛
) + 𝑖sin(

𝛼+2𝑘𝜋

𝑛
))= wk.

This indicates that we only get n different roots of z of order n, 
namely w0,w1, ... ,wn-1 – no more, no less.

Important. The root formula and its consequences apply only 
to roots of a number not to roots of a polynomial.



Picture from Wikipedia.

Roots of order n of a 
complex number z are 
uniformly distributed 
over the circle centered at 
0 and with the radius of 
𝑛 𝑟. The angular distance 
between any two 

consecutive roots is 
2𝜋

𝑛
.



Polynomials

Definition. A polynomial of degree n over a set K is any 
function f: K→K of the form 

f (x) = anx
n + an-1x

n-1+ … + a1x + a0

where a0, a1, …, an ∈K and an ≠0. The set of all polynomials 
over K is denoted by K[x]. 

We adopt the convention that the degree of the zero 
polynomial 0 is =−∞. For other constant polynomials, the 
degree is 0. K will usually be the set ℝ or ℂ.

Definition. 
Let f be a polynomial over K. A number a from 𝐾 is called a
root of  f if and only if f(a) = 0.



Fact. (Remainder lemma)
For every two polynomials f, g ∈K[x] with g ≠ 0 there exist 
polynomials q, r∈K[x] such that

f = qg + r and deg(r ) < deg(g).

Corollary.

A number a is a root of a polynomial f(x) if and only if f(x) is
divisible by (𝑥 − 𝑎).



Theorem(Main Theorem of Algebra

Every polynomial 𝑓 ∈ ℂ[x] of degree at least 1 has a root in ℂ.

Corollary.

Every polynomial 𝑓 ∈ ℂ[x] of degree n has exactly n roots 
(counting multiplicities).



Theorem.
If f ∈ ℝ[𝑥] then for every root z of f, 𝑧 is also a root of f.
Proof.

f(z) = anz
n + an-1z

n-1+ … + a1z + a0 = 0. Hence, 𝑓 𝑧 = 0 = 0, 
and 

𝑓 𝑧 =anz
n + an−1z

n−1+ … + a1z + a0 = 

anz
n + an−1z

n−1 + … a1z + ഥa0 = 

an𝑧
n + an-1𝑧

n-1+ … + a1 𝑧 + a0 = f(𝑧) = 0.



Corollary.
If f ∈ ℝ[𝑥] then f can be factored into a product of polynomials
from ℝ[𝑥] of degree at most 2 each.
Proof.

It follows from the fact that 𝑥 − 𝑎 + 𝑏𝑖 𝑥 − 𝑎 − 𝑏𝑖 =

𝑥2 − 𝑥 𝑎 − 𝑏𝑖 − 𝑥 𝑎 + 𝑏𝑖 + (𝑎 + 𝑏𝑖)(𝑎 − 𝑏𝑖) =

𝑥2 − 2𝑎𝑥 + 𝑥𝑏𝑖 − 𝑥𝑏𝑖 + 𝑎2 + 𝑏2.

Comprehension.

Prove on your own: every polynomial from ℝ[𝑥] with on odd 
degree has at least one real root.


